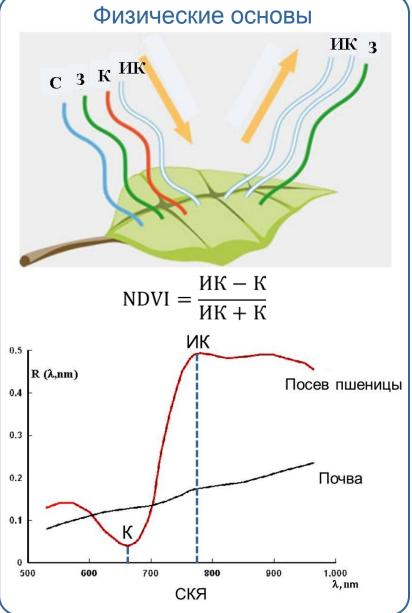
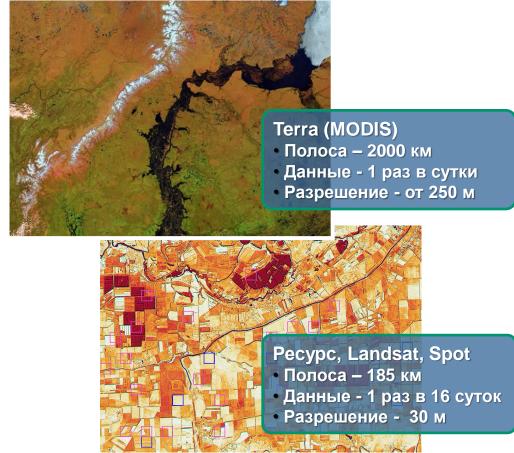


Всероссийский НИИ сельскохозяйственной метеорологии


Оценка средне-районной урожайности зерновых культур по спутниковой информации Modis.

А.Д. Клещенко, О.В. Савицкая, С.А. Косякин.


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА

- Существующий метод расчета средне-областной и среднерайонной урожайности зерновых культур на основе спутниковой и наземной информации
- Усовершенствованный метод расчета средне-районной урожайности путем включения новых информационных продуктов и интерполяционной сетки.

КОСМИЧЕСКАЯ АГРОМЕТЕОРОЛОГИЯ

Существующий метод расчета средне-районной урожайности зерновых культур на основе спутниковой и наземной информации

Входные данные:

- Статистическая информация: **средне-областная** урожайность;
- Спутниковая информация: **NDVI** (ИКИ, сервис BEГА-PRO);
- Наземная информация: **средне областные** декадные агрометеорологические данные.

Регрессионные модели:

Y = a + bx1 + cx2

а – свободный член

b – коэффициент при дефиците влажности воздуха

с – коэффициент при NDVI

Северо-Кавказское УГМС, 2 декады мая

	Осадки	Темпе- ратура	Нак. темпе- ратура	NDVI	Нак. NDVI	Нак. ГТК	Дефи- цит	Урожай- ность оз. пшеницы
Осадки	1,00							
Температура	-0,05	1,00						
Нак. температура	0,51	0,43	1,00					
NDVI	0,45	-0,12	0,48	1,00				
Нак. NDVI	0,42	-0,12	0,47	0,98	1,00			
Нак. ГТК	0,86	-0,08	0,58	0,57	0,53	1,00		
Дефицит	-0,73	0,32	-0,57	-0,53	-0,54	-0,81	1,00	
Урожайность оз. пшеницы	0,44	0,03	0,57	0,88	0,87	0,54	-0,53	1,00

Регрессионные модели

для субъектов Северо-Кавказское УГМС

Месяц	Декада	Коэффицие	нты уравнені	ия регрессии	R	Стандартная	Коэффициент эластичности	
		а	b	С		ошибка	D	NDVI
Апрель	3	2,37	-0,72	79,24	0,88	4,21	-0,15	1,05
Май	1	-3,4	-0,39	78,77	0,88	4,25	-0,08	1,19
Май	2	-3,51	-0,61	76,06	0,86	4,60	-0,15	1,26
Май	3	-8,24	-0,48	83,02	0,86	4,99	-0,14	1,41
Июнь	1	-8,34	-0,73	83,42	0,83	5,03	-0,18	1,45

Коэффициенты множественной корреляции от 0,498 являются значимыми на 5% уровне

а – свободный член

b – коэффициент при дефиците влажности воздуха

с – коэффициент при NDVI

Средняя урожайность озимой пшеницы:

Краснодарский край - 47,3

Ставропольский край - 33,2

Ростовская область - 28,0

Волгоградская область - 21,2

Уточненные регрессионные модели

для субъектов Приволжского УГМС

Месяц	Декада	Коэффициенты уравнений за период 2001-2007 гг.			Коэффициенты уравнений за период 2001-2008 гг.			
		а	a b c		a	b	С	
Май	2	7,06	-1,05	44,84	8,66	-0,89	37,67	
Май	3	4,86	-0,32	31,66	5,88	-0,31	29,26	
Июнь	1	9,09	-0,42	21,14	8,51	-0,4	21,78	

а – свободный член

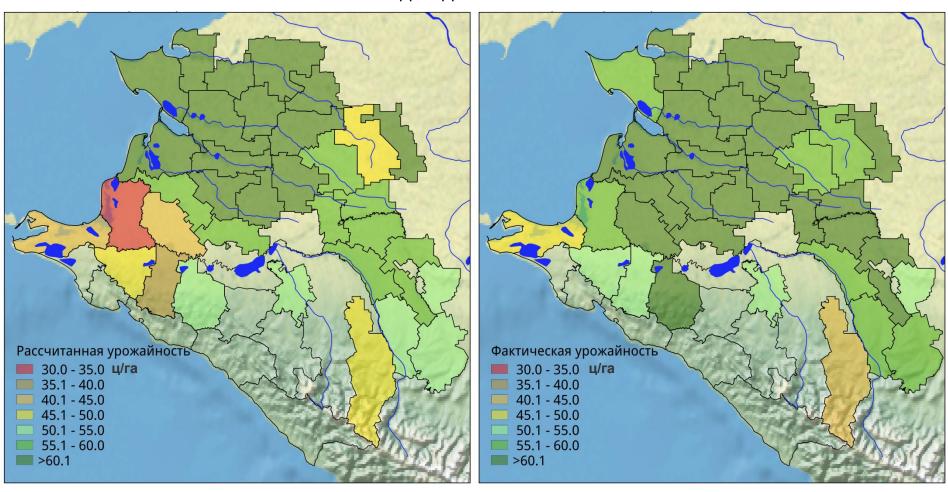
b – коэффициент при дефиците влажности воздуха

с – коэффициент при NDVI

Количественная оценка урожайности озимой пшеницы за 2007 год

для субъектов Северо-Кавказское УГМС

			Ср	Сравнение рассчитанной и фактической урожайности							
Месяц Декада	Область, край	Рассчитанная, ц/га	Фактическая, ц/га	Абсолютная ошибка, ц/га	Относи- тельная ошибка, %	0,67 сигмы, ц/га					
		Волгоградская	19,3	18,6	-0,7	3,6	4,5				
май	3	Ростовская	22,3	19,9	-2,4	12,2	4,3				
Маи	5	Краснодарский	36,3	45,1	8,8	19,5	4,1				
		Ставропольский	34,5	35,7	1,2	3,3	3,6				
		Волгоградская	18,2	18,6	0,4	2,0	4,5				
		Ростовская	19,5	19,9	0,4	1,8	4,3				
июнь	1	Краснодарский	40,6	45,1	4,5	10,0	4,1				
		Ставропольский	28,7	35,7	7,0	19,7	3,6				


Критерий Фишера, критерий Стьюдента

Оправдываемость методов расчетов в результате авторских испытаний (2007 – 2009 гг.):

испытываемый – 79 % инерционный – 25% климатологический – 25%

Сравнение рассчитанных и фактических районных урожайностей озимой пшеницы, Краснодарский край

3 декада мая 2017 г.

Средняя относительная ошибка: 7,9 %.

Оценка ожидаемой урожайности озимой пшеницы на конец 1 декады мая

2003 год – низкая урожайность, 23,0 ц/га

2009 год – средняя урожайность, 31,9 ц/га

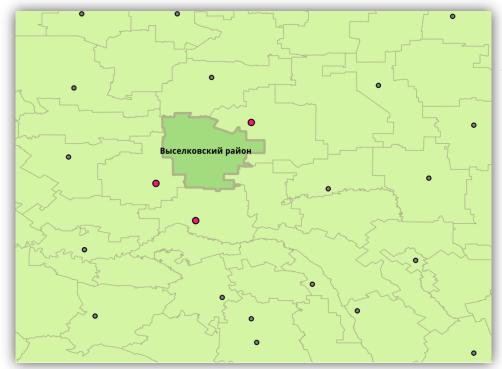
2008 год – высокая урожайность, 38,5 ц/га

Сравнение существующего и усовершенствованного методов

Отличие	Существующий метод	Усовершенствованный метод
Урожайность	Средне-областная	Средне-районная
Спутниковая информация	NDVI	NDVI, IKI MODIS LAI
Наземная информация	Декадные агрометеорологические данные в разрезе области	Декадные и срочные агрометеорологические данные в разрезе района
Интерполяционная сетка	_	Метод обратных взвешенных квадратов расстояний
Дифференциация территории на зоны	-	Карты агроклиматического районирования территории, разработанной Д.И. Шашко

Усовершенствованный метод расчета средне-районной урожайности зерновых культур на основе спутниковой и наземной информации

Входные данные:


- Статистическая информация: **средне-районная** урожайность (Федеральная служба государственной статистики, база данных показателей муниципальных образований);
- Спутниковая информация: новый информационный продукт **IKI MODIS LAI, NDVI, VCI** (ИКИ, сервис ВЕГА-PRO).

$$VCI_i = \frac{100*(NDVI_i - NDVI_{min})}{NDVI_{max} - NDVI_{min}}$$
, где $NDVI_i$ - значение NDVI для даты j; $NDVI_{max}$ - максимальное значение NDVI внутри всего набора данных; $NDVI_{min}$ - минимальное значение NDVI внутри всего набора данных.

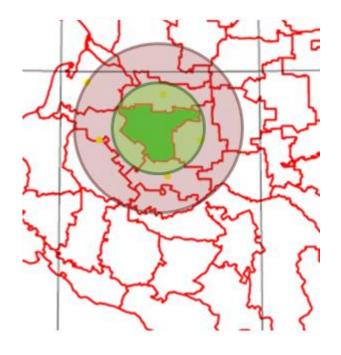
 Наземная информация: декадные и срочные агрометеорологические данные по станциям.

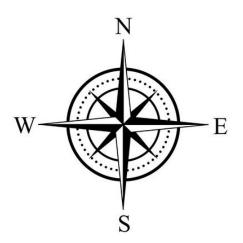
Метод обратных взвешенных квадратов расстояний (Ю.В. Ткачева, 2018 г.)

- Станция расположена внутри района;
- Станция внутри района отсутствует, расчет осуществляется по данным трех ближайших станций.

Ближайшая точка вносит больший вклад в интерполируемое значение, чем более удаленная.

$$E = \frac{\sum_{i=1}^{n} w_i E_i}{\sum_{i=1}^{n} w_i}$$


$$\mathbf{w}_{i} = \frac{1}{\mathbf{r}_{i}^{2}}$$


где E — рассчитываемое средневзвешенное значение метеорологического параметра; $\mathbf{E}_{_{\mathrm{i}}}$ - значения метеорологического параметра в ближайших точках, попавших в заданную окрестность;

 w_i - рассчитываемый вес і-ой точки — обратная функция расстояния;

 ${\bf r}_{{\bf r}_{{\bf r}_{{\bf r}_{{\bf r}}}}}$ - расстояние от точки интерполяции до і-ой точки.

Критерий выбора ближайших агрометеорологичеких станций

Первый этап— выбор оптимальной удаленности станций.

Вычисляются центы районов, граничащих с анализируемым. Максимальное расстояние от самого удаленного центра уменьшается вдвое, если же нужное количество станций не найдено в получившемся радиусе(на рис. отмечен зеленым кругом), то берутся станции из полученного изначально радиуса (на рис. бордовый круг).

Второй этап — расположение станции по сторонам света.

Максимальный радиус не превышает 80 км.

Предварительная обработка данных

0,73

NDVI

0,78

0,83

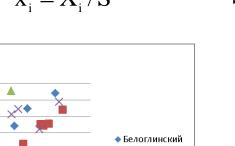
0,88

0,68

65 60

30 25

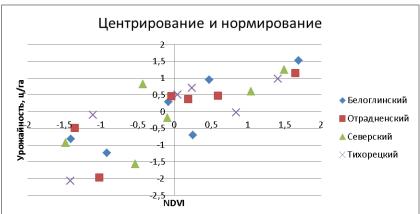
0,63

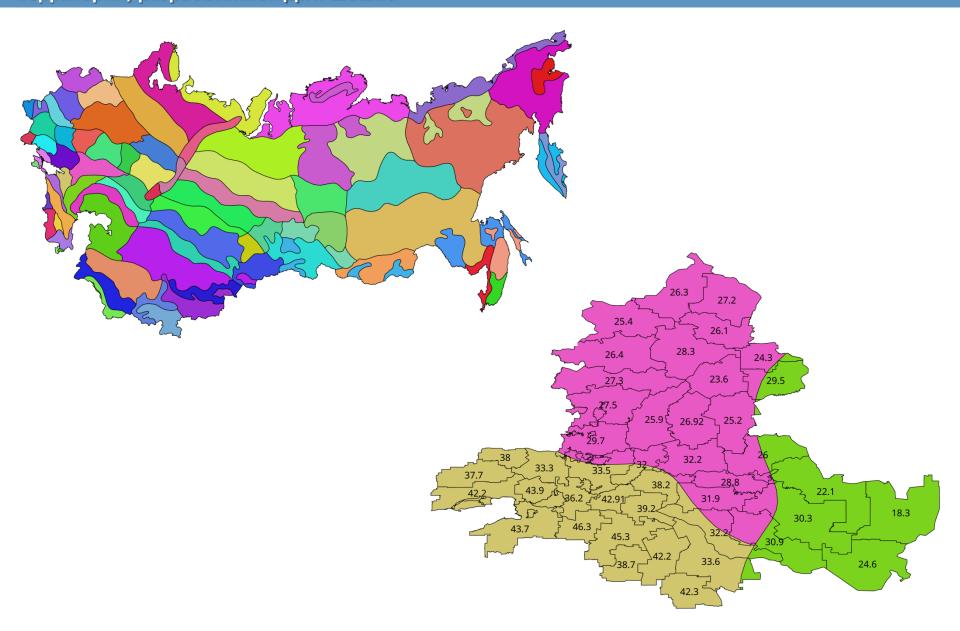

- Временной диапазон 6 лет: c 2012 по 2017 гг.
- Данные по районам объединялись в группы для увеличения объема выборки.
- Центрирование и нормирование данных:

разность между исходными числами и их средним

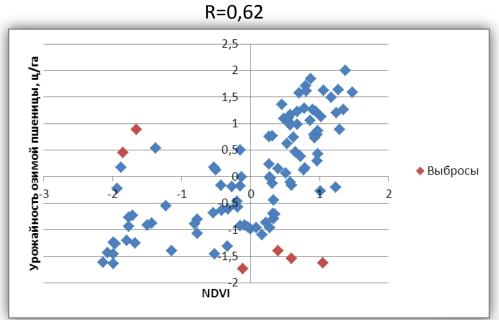
$$X_i = V_i - V$$

нормирование, путем деления на сигму

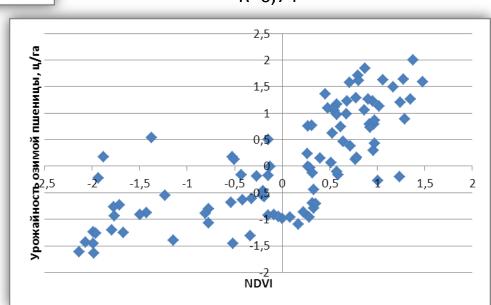

$$X_i = X_i / S$$


■ Отрадненский

▲ Северский


×Тихорецкий

Дифференциация территории на зоны на основе карты агроклиматического районирования территории, разработанной Д.И. Шашко



Выбросы, Оренбургская область, 3 декада мая

Стандартизованные остатки выходят за пределы диапазона от -2 до 2

Множественные коэффициенты корреляции

Ростовская область

Месяц Декада		Группа 1		Группа 2		Группа 3		Группа 4	
	Долода	NDVI	LAI	NDVI	LAI	NDVI	LAI	NDVI	LAI
Май	1	0,78	0,87	0,80	0,88	0,76	0,79	0,82	0,88
Май	2	0,90	0,93	0,77	0,84	0,85	0,90	0,86	0,92
Май	3	0,92	0,96	0,91	0,90	0,89	0,96	0,85	0,94
Июнь	1	0,81	0,93	0,84	0,89	0,82	0,89	0,76	0,86

Волгоградская область

Месяц	Декада	Груг	іпа 1	Группа 2	
		NDVI	LAI	NDVI	LAI
Май	1	0,71	0,77	0,78	0,83
Май	2	0,89	0,91	0,86	0,86
Май	3	0,89	0,92	0,86	0,86
Июнь	1	0,87	0,89	0,81	0,84

Уточненные регрессионные модели

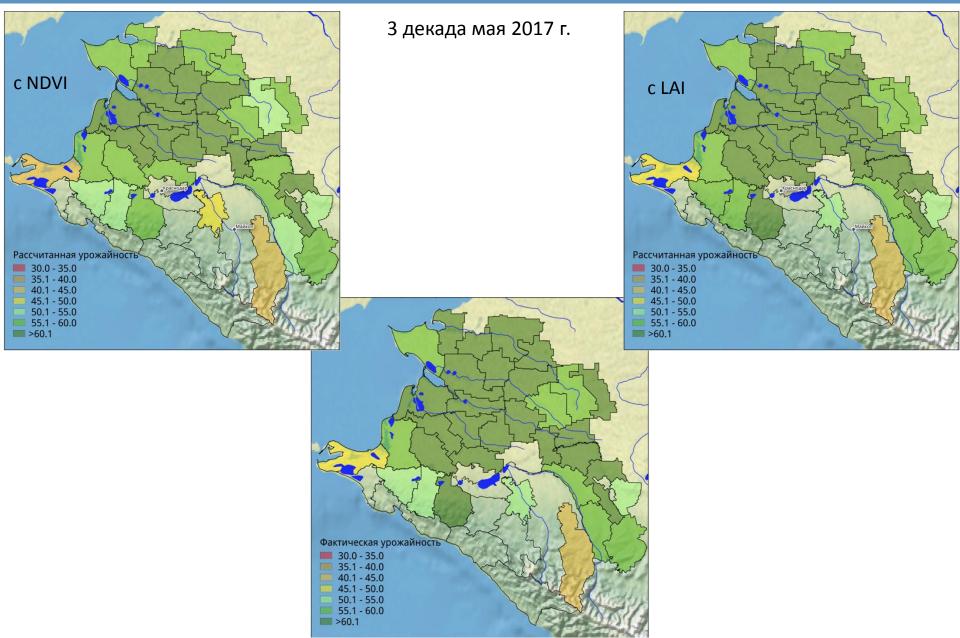
для районов Ростовской области

Месяц	Декада	Коэффицие	нты уравнени 2012-2016 гг.	_	Коэффициенты уравнений за период 2012-2017 гг.		
		а	b	С	a	b	С
Май	2	0	-0,44	0,51	0	-0,37	0,59
Май	3	0	-0,36	0,79	0	-0,31	0,80
Июнь	1	0	-	0,71	0	-	0,81

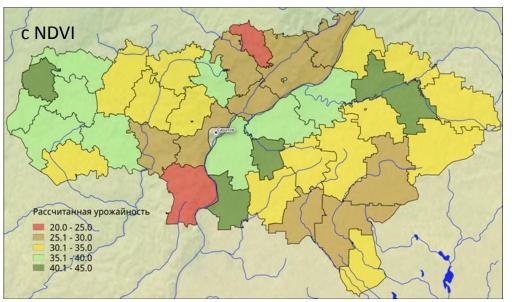
а – свободный член

b – коэффициент при дефиците влажности воздуха

с – коэффициент при NDVI

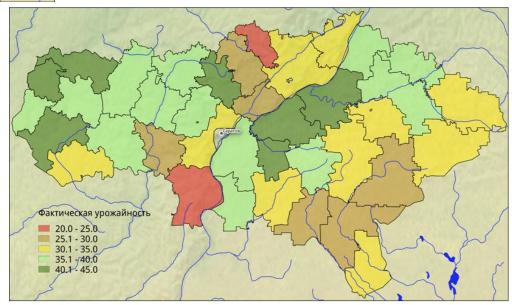

Месяц	Декада	Коэффициенты уравнений за период 2012-2016 гг.			Коэффициенты уравнений за период 2012-2017 гг.			
		а	b	С	a	b	С	
Май	2	0	-0,43	0,56	0	-0,33	0,66	
Май	3	0	-0,30	0,86	0	-0,22	0,87	
Июнь	1	0	-	0,90	0	-	0,93	

а – свободный член


b – коэффициент при дефиците влажности воздуха

с – коэффициент при LAI

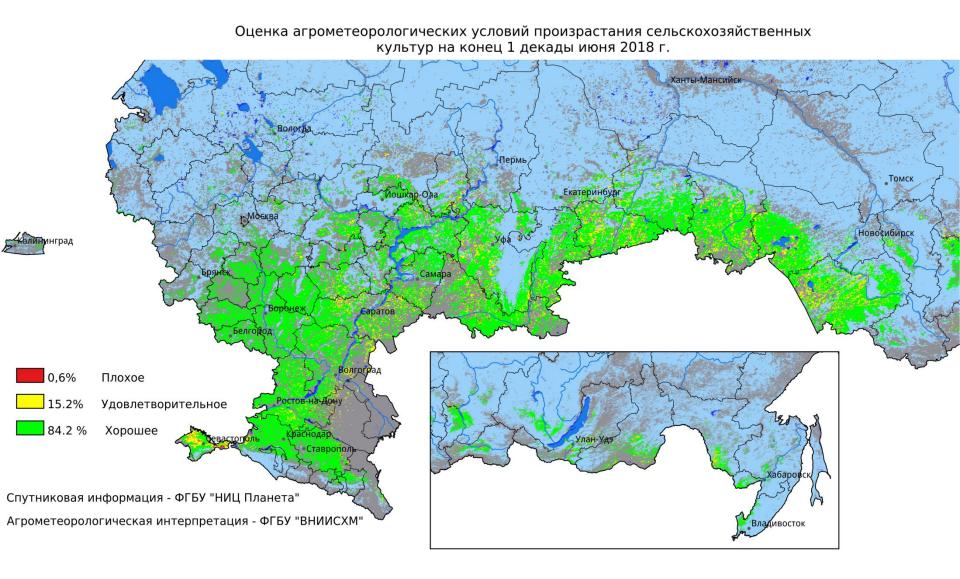
Сравнение рассчитанных и фактических районных урожайностей озимой пшеницы, Краснодарский край



Сравнение рассчитанных и фактических районных урожайностей озимой пшеницы, Саратовская область

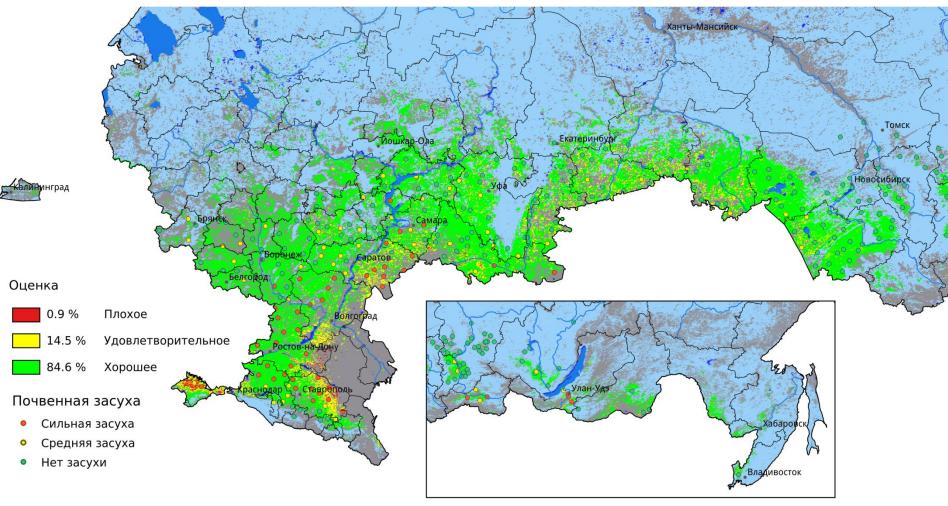
2017 июнь 1 декада

Относительная ошибка, %	Количество районов	Процент районов, %
менее 5	22 из 38	58
от 5 до 10	11 из 38	29
более 10	5 из 38	13



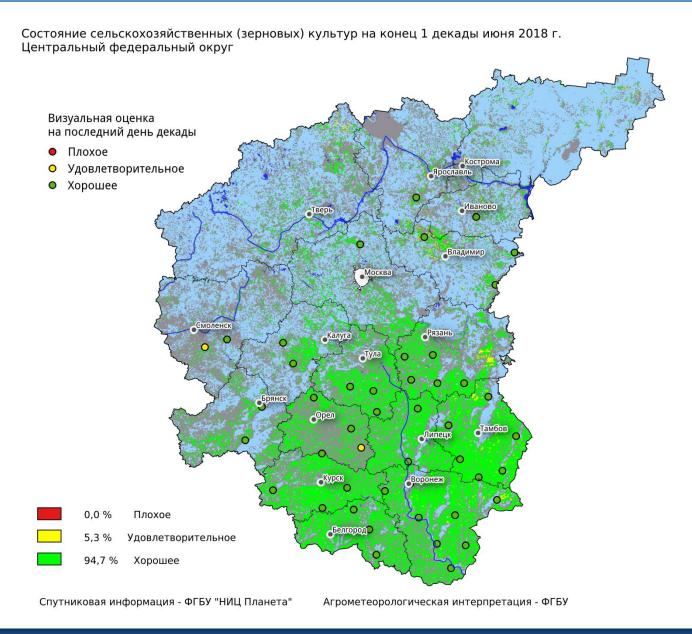
Сравнение рассчитанных и фактических районных урожайностей озимой пшеницы, 2017 г.

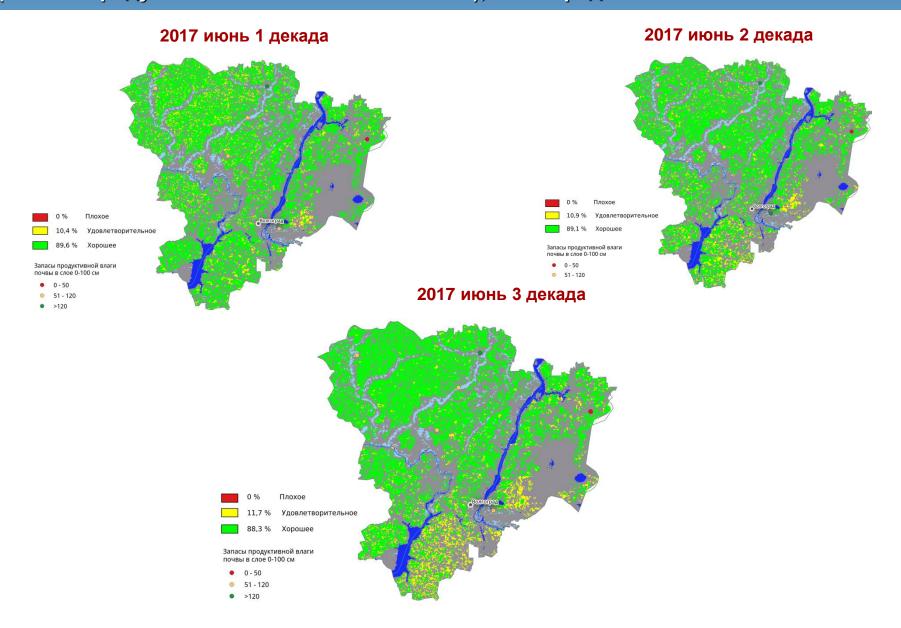
Краснодарский край, 38 районов, средняя относительная ошибка, %


Декада	Существующий метод (NDVI), %	Новый метод (NDVI) , %	Новый метод (LAI) , %
3 декада апреля	13,39	5,68	6,36
1 декада мая	18,73	7,57	6,09
2 декада мая	16,21	3,92	4,27
3 декада мая	7,94	3,62	2,68
1 декада июня	10,3	3,60	2,34

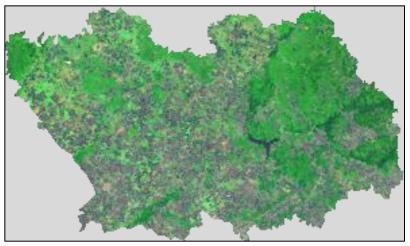
Карта оценки состояния посевов на территории Российской Федерации

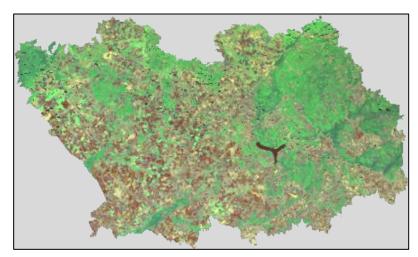
Карта оценки состояния посевов по спутниковой информации и почвенной засухи по наземным данным

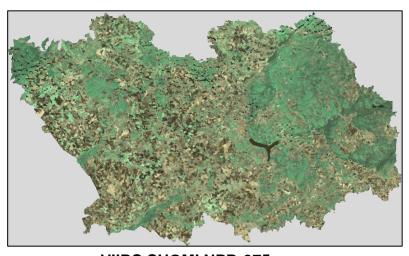

Оценка агрометеорологических условий произрастания сельскохозяйственных культур на конец 2 декады июня 2018 г.


Спутниковая информация - ФГБУ "НИЦ Планета"

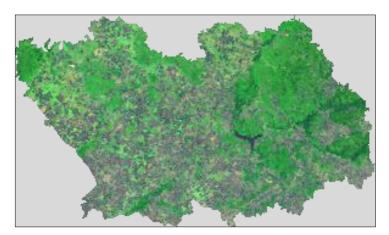
Агрометеорологическая интерпретация - ФГБУ


Карта оценки состояния посевов совместно с наземными данными для Центрального ФО (визуальная оценка на последний день декады)


Карта оценки состояния посевов совместно с наземными данными (запасы продуктивной влаги в слое 0-100 см), Волгоградская область

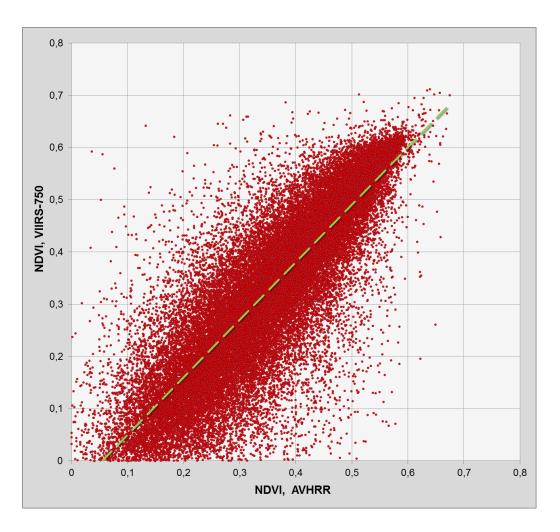

Композиты (Пенза, 09.2018)

AVHRR NOAA, 1 km



VIIRS SUOMI NPP, 750 m

VIIRS SUOMI NPP, 375 m


NDVI (Пенза, 09.2018)

AVHRR NOAA, 1 km

VIIRS SUOMI NPP, 750 m

СПАСИБО ЗА ВНИМАНИЕ